MicroRNA cluster miR-17-92 Cluster in Exosomes Enhance Neuroplasticity and Functional Recovery After Stroke in Rats.
نویسندگان
چکیده
BACKGROUND AND PURPOSE Multipotent mesenchymal stromal cell (MSC) harvested exosomes are hypothesized as the major paracrine effectors of MSCs. In vitro, the miR-17-92 cluster promotes oligodendrogenesis, neurogenesis, and axonal outgrowth. We, therefore, investigated whether the miR-17-92 cluster-enriched exosomes harvested from MSCs transfected with an miR-17-92 cluster plasmid enhance neurological recovery compared with control MSC-derived exosomes. METHODS Rats subjected to 2 hours of transient middle cerebral artery occlusion were intravenously administered miR-17-92 cluster-enriched exosomes, control MSC exosomes, or liposomes and were euthanized 28 days post-middle cerebral artery occlusion. Histochemistry, immunohistochemistry, and Golgi-Cox staining were used to assess dendritic, axonal, synaptic, and myelin remodeling. Expression of phosphatase and tensin homolog and activation of its downstream proteins, protein kinase B, mechanistic target of rapamycin, and glycogen synthase kinase 3β in the peri-infarct region were measured by means of Western blots. RESULTS Compared with the liposome treatment, both exosome treatment groups exhibited significant improvement of functional recovery, but miR-17-92 cluster-enriched exosome treatment had significantly more robust effects on improvement of neurological function and enhancements of oligodendrogenesis, neurogenesis, and neurite remodeling/neuronal dendrite plasticity in the ischemic boundary zone (IBZ) than the control MSC exosome treatment. Moreover, miR-17-92 cluster-enriched exosome treatment substantially inhibited phosphatase and tensin homolog, a validated miR-17-92 cluster target gene, and subsequently increased the phosphorylation of phosphatase and tensin homolog downstream proteins, protein kinase B, mechanistic target of rapamycin, and glycogen synthase kinase 3β compared with control MSC exosome treatment. CONCLUSIONS Our data suggest that treatment of stroke with tailored exosomes enriched with the miR-17-92 cluster increases neural plasticity and functional recovery after stroke, possibly via targeting phosphatase and tensin homolog to activate the PI3K/protein kinase B/mechanistic target of rapamycin/glycogen synthase kinase 3β signaling pathway.
منابع مشابه
Correction to: MicroRNA-17-92 Cluster in Exosomes Enhance Neuroplasticity and Functional Recovery After Stroke in Rats.
In the article by Xin et al, “MicroRNA-17–92 Cluster in Exosomes Enhance Neuroplasticity and Functional Recovery After Stroke in Rats,” which published online ahead of print February 23, 2017, and appeared in the March 2017 issue of the journal (Stroke. 2017;48:747–753. DOI: 10.1161/STROKEAHA.116.015204), a correction is needed. On page 747, in the title, “MicroRNA cluster miR-17–92 Cluster in ...
متن کاملMicroRNA-17–92 Cluster in Exosomes Enhance Neuroplasticity and Functional Recovery After Stroke in Rats
Multipotent mesenchymal stromal cells (MSCs) are selfrenewing, multipotent progenitor cells, which robustly release exosomes. MSCs improve neurological outcome after stroke and may exert their therapeutic effects through exosomes. MSC-harvested exosomes are involved in cellto-cell communication and are hypothesized as the paracrine effectors of MSCs by encapsulating and transferring a large num...
متن کاملMicroRNA cluster miR-17-92 regulates multiple functionally related voltage-gated potassium channels in chronic neuropathic pain
miR-17-92 is a microRNA cluster with six distinct members. Here, we show that the miR-17-92 cluster and its individual members modulate chronic neuropathic pain. All cluster members are persistently upregulated in primary sensory neurons after nerve injury. Overexpression of miR-18a, miR-19a, miR-19b and miR-92a cluster members elicits mechanical allodynia in rats, while their blockade alleviat...
متن کاملNeuroplasticity and neuromotor synergies in context of rehabilitation after stroke: a systematic review
Background: Alterations of neuroplasticity and cortical excitability are important pathophysiological factors in stroke. Modulation of the neuroplasticity has been proposed as an underlying mechanism of recovery in different neurological disorders. But it is not still clear how the CNS faces the complexity of muscle control. Neuroplastic processes may be used for the functional improvement of s...
متن کاملMicroRNA-17-92, a Direct Ap-2α Transcriptional Target, Modulates T-Box Factor Activity in Orofacial Clefting
Among the most common human congenital anomalies, cleft lip and palate (CL/P) affects up to 1 in 700 live births. MicroRNA (miR)s are small, non-coding RNAs that repress gene expression post-transcriptionally. The miR-17-92 cluster encodes six miRs that have been implicated in human cancers and heart development. We discovered that miR-17-92 mutant embryos had severe craniofacial phenotypes, in...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Stroke
دوره 48 3 شماره
صفحات -
تاریخ انتشار 2017